Ciencia

Hallan un nuevo gas atmosférico y rastrean la pérdida de agua en Marte

- La misión ExoMars encuentra cloruro de hidrógeno, lo que sugiere una nueva interacción entre superficie y atmósfera

MADRID
SERVIMEDIA

El orbitador de la misión Exomars-TGO, programa conjunto de la Agencia Espacial Europea (ESA) y la Agencia Espacial Federal de Rusia (Roscosmos) que tiene como fin principal abordar si alguna vez hubo vida en Marte, ha encontrado cloruro de hidrógeno por primera vez en la atmósfera marciana, lo que sugiere una interacción totalmente nueva entre la superficie y la atmósfera del planeta rojo.

Entre los objetivos principales en la exploración de Marte destacan la búsqueda de gases atmosféricos vinculados a la actividad biológica o geológica, así como el desarrollo de un inventario del agua del planeta, tanto en el pasado como en el presente, para determinar si Marte pudo ser habitable y si algún depósito de agua se halla accesible para exploración humana futura.

Dos nuevos resultados del equipo de ExoMars, publicados este miércoles en la revisa 'Science Advances' y en los que participan investigadores del Instituto de Astrofísica de Andalucía (IAA-CSIC), revelan una clase de química completamente nueva y brindan más información sobre los cambios estacionales y las interacciones entre la superficie y la atmósfera de Marte.

"Hemos descubierto cloruro de hidrógeno por primera vez en Marte. Se trata de la primera detección de un gas halógeno en la atmósfera marciana y representa un nuevo ciclo químico que debemos comprender", apunta Kevin Olsen, investigador de la Universidad de Oxford (Reino Unido) y uno de los científicos que encabezan el descubrimiento.

El cloruro de hidrógeno, formado por un átomo de hidrógeno y uno de cloro, forma parte del grupo de gases con base de azufre y cloro a los que los especialistas en Marte prestan una especial atención por ser indicadores de la actividad volcánica.

Sin embargo, la naturaleza de las observaciones del cloruro de hidrógeno, detectado en lugares muy distantes a la vez y sin la presencia de otros gases asociados a la actividad volcánica, apunta a una fuente distinta. Así, el descubrimiento sugiere una interacción entre la superficie y la atmósfera completamente nueva, impulsada por las estaciones de polvo en Marte.

En un proceso muy similar al que se observa en la Tierra, las sales en forma de cloruro de sodio, restos de antiguos océanos evaporados e incrustadas en la superficie de Marte, son elevadas a la atmósfera por los vientos. La luz solar calienta la atmósfera y hace que se eleve el polvo, así como el vapor de agua liberado desde los casquetes polares. El polvo salado reacciona con el agua atmosférica para liberar cloro, que luego reacciona con moléculas que contienen hidrógeno para crear cloruro de hidrógeno.

Así, en Marte habría un escenario químico donde el agua representa un papel fundamental y donde también parece haber una correlación con el polvo, ya que se observa más cloruro de hidrógeno cuando aumenta la actividad del polvo, que a su vez está relacionado con el calentamiento estacional del hemisferio sur.

El equipo detectó por primera vez el gas simultáneamente en los hemisferios norte y sur durante la tormenta de polvo global en 2018 y fue testigo de su desaparición, sorprendentemente rápida, al final del periodo estacional del polvo. En la actualidad, los investigadores analizan los datos recopilados durante la siguiente temporada de polvo, donde, de nuevo, se observa un aumento en el cloruro de hidrógeno.

VAPOR DE AGUA

Las evidencias apuntan a que, en el pasado, el agua líquida fluyó a través de la superficie de Marte, como lo demuestran los numerosos antiguos valles y canales de ríos secos. Hoy en día se halla en los casquetes polares y enterrada bajo tierra, y se sabe que el planeta sigue perdiendo agua, que escapa a la atmósfera en forma de vapor.

Comprender la interacción de los posibles depósitos de agua y su comportamiento estacional y a largo plazo resulta clave para comprender la evolución del clima de Marte. Esto se puede llevar a cabo mediante el estudio del vapor de agua y del agua semipesada, en la que un átomo de hidrógeno se reemplaza por un átomo de deuterio, una forma de hidrógeno con un neutrón adicional.

La proporción entre deuterio e hidrógeno funciona a modo de reloj, ya que informa sobre la historia del agua en Marte y sobre cómo evolucionó su pérdida con el tiempo. La misión ExoMars-TGO permite observar la trayectoria de los distintos tipos de agua a medida que se elevan en la atmósfera con un detalle sin precedentes, ya que las mediciones anteriores sólo aportaban el promedio sobre la profundidad de toda la atmósfera.

"Es como si antes sólo tuviéramos una vista en dos dimensiones, mientras que ahora podemos explorar la atmósfera marciana en 3D", indica Ann Carine Vandaele, investigadora principal del instrumento Nomad (Nadir and Occultation for MArs Discovery), que se utilizó para esta investigación y en el que participa el IAA-CSIC.

Los nuevos datos muestran que, una vez que el agua se vaporiza por completo, presenta un gran enriquecimiento en agua semipesada y una relación entre deuterio e hidrógeno seis veces mayor que la terrestre en todos los depósitos de Marte, lo que confirma que, con el tiempo, se han perdido grandes cantidades de agua.

Los datos de ExoMars, recopilados entre abril de 2018 y abril de 2019, mostraron también tres factores que aceleraron la pérdida de agua de la atmósfera: la tormenta de polvo global de 2018, una tormenta regional corta pero intensa en enero de 2019 y la liberación de agua de la capa de hielo del polo sur durante los meses de verano. También se observó una columna de vapor de agua en aumento durante el verano austral que, se cree, inyectaría agua en la atmósfera superior de forma estacional y anual.

"Los dos trabajos certifican el magnífico set de instrumentos que están caracterizando la atmósfera de Marte: desde el descubrimiento y detección de la presencia de cloruro de hidrógeno, en cantidades muy pequeñas pero suficientes para ser detectadas y cuantificadas por los instrumentos ACS y Nomad, a la caracterización y cuantificación del escape del agua del planeta, midiendo incluso la fracción de agua pesada que escapa en relación al total. Esto constituye un paso importantísimo para entender la historia de la evolución de la atmósfera de Marte, desde una atmósfera más densa y con una mayor cantidad de agua hasta la débil atmósfera que presenta en la actualidad”, concluye José Juan López-Moreno, investigador del IAA-CSIC, que participa en los resultados y en el consorcio del instrumento Nomad.

(SERVIMEDIA)
10 Feb 2021
MGR/clc